Early Nutrition of LBW Preterm Infants and the Developmental Impact

David Clark M.D.
Professor and Chair of Pediatrics
Albany Medical Center

Growth
- Prior to birth - intrauterine environment
 Placenta – nutrients, hormones, clear waste products – heat, acids, CO₂, ammonia, bilirubin
 Gravity minimized

Brain Development
- Protein-energy
- Iron
- Zinc
- Copper
- LC-PUFAs
- Choline

Brain Development
- Protein-energy
- Iron
- Zinc
- Copper
- LC-PUFAs
- Choline

Growth
- Neonate
 High metabolic rate
 Lack of energy reserve – glycogen, fat
 Waste clearance
 immature liver and kidneys
 Organisms – Bacteria, viruses
 Barriers – skin, respiratory tract GI tract

Parenteral Nutrition
Breast Milk – The Gold Standard

Biologic Product
- 20cal/30cc blended mature milk
- Foremilk – high lactose 16 cal/30cc
- Hindmilk – high fat 24 cal/30cc

Breast Milk – The Gold Standard

Biologic Product - Antimicrobials
- Secretory IgA, IgM, IgG
- Lysozyme
- Complement C3
- Bifidus Factor
- Antiviral Mucins
- Oligosaccharides

Breast Milk – The Gold Standard

Biologic Product – Cytokines
- Tumor necrosis factor
- Interleukins
- Interferon
- Prostaglandins
- Platelet activating factor
- Alpha-1 Anti-trypsin

Breast Milk – The Gold Standard

Biologic Product - Hormones
- Insulin
- Prolactin
- Thyroid Hormone
- Corticosteroids
- Oxytocin
- Calcitonin
- Parathyroid hormone
- Erythropoietin

Breast Milk – The Gold Standard

Biologic Product - Growth Factors
- Epidermal Growth Factor
- Nerve Growth Factor
- Insulin-like Growth Factor
- Transforming Growth Factor
- Polyamines

Breast Milk – The Gold Standard

Biologic Product - Digestive Enzymes
- Amylase
- Lipases
- Lipoprotein lipase
- Ribonuclease
Breast Milk – The Gold Standard

Biologic Product - Transporters
- Lactoferrin
- Folate binder
- Cobalamin binder
- IgF binder
- Thyroxine binder
- Corticosteroid binder

Breast Milk – The Gold Standard

Biologic Product - Stuff
- DNA, RNA - nucleotides
- Lutein
- Lycopene
- Gamma sleep peptides

Breast Milk – The Gold Standard

Biologic Product - Bad Stuff
- Environmental contaminants
 - Heavy metals – Pb, Hg
- Antibiotics
- PCB, PBB
- Infectious agents
 - Viruses – HIV, Rubella
- Medications
 - Chemotherapy, Lithium, Antipsychotics

Essential for Growth

- **Energy**
- **Protein**
- **Potassium**

Food and Drug Act – 1938,1941

Formula Labeling
- Moisture
- Calcium
- Protein
- Phosphorus
- Fat
- Iron
- Carbohydrate
- Fiber
- Vitamins A,B,C,D
Energy

- Carbohydrate
- Fats
- Protein

Energy

- Carbohydrate
 - Lactose
 - Maltose
 - Sucrose
 - Glucose Polymers
 - Lactulose
 - Dextrose

Energy

- Carbohydrate
 - Lactose = Glucose + Galactose
 - Maltose = Glucose + Glucose
 - Sucrose = Glucose + Fructose
 - Glucose Polymers = Glu + Glu + ...
 - Lactulose = Galactose + Fructose

Energy

- Carbohydrate
 - Lactose = Glucose + Galactose
 - Maltose = Glucose + Glucose
 - Sucrose = Glucose + Fructose
 - Glucose Polymers = Glu + Glu + ...
 - Lactulose = Galactose + Fructose

Energy

- Carbohydrate
 - Lactose = Glucose + Galactose
 - Maltose = Glucose + Glucose
 - Sucrose = Glucose + Fructose
 - Glucose Polymers = Glu + Glu + ...
 - Lactulose = Galactose + Fructose

Energy

- Carbohydrate
 - Lactose = Glucose + Galactose
 - Maltose = Glucose + Glucose
 - Sucrose = Glucose + Fructose
 - Glucose Polymers = Glu + Glu + ...
 - Lactulose = Galactose + Fructose

Energy

- Carbohydrate
 - Dextrose
 - Dextrorotary isomer of glucose
 - Polymerizes to glycogen
 - Insulin facilitates cell entry

Energy

- Carbohydrate
- Fats
- Protein
Energy

- Fats
- Triglycerides
- Glycerol + 3 fatty acids
- Essential Fatty Acids
- Linoleic
- Alpha-linolenic
- Cholesterol

Fatty Acid Nomenclature Polyunsaturated Fatty Acids

- PUFA
 - 18:2ω6 or linoleic acid
 - 18:3ω3 or α-linolenic acid

- LCPUFA
 - 20:4ω6 or arachidonic acid (ARA)
 - 20:5ω3 or eicosapentaenoic acid (EPA)
 - 22:6ω3 or docosahexaenoic acid (DHA)

Fatty Acid Profile of Human Milk is Gold Standard

Brain Growth Especially Rapid in the Last Trimester and First 2 Years of Life

DHA Accumulates in the Brain Early and Rapidly

DHA and ARA: Important Building Blocks of the Growing Brain

Membranes, Supports Growth

- Linoleic n-6
- α-Linolenic n-3
- Eicosapentaenoic
- DHA

Critical Biologic Mediators

- Arachidonic (ARA)
- Prostaglandins, etc (+/−)

- Eicosapentaenoic (EPA)
- Prostaglandins, etc (+/−)

- Docosahexaenoic (DHA)
- Docosanoids

Membranes, Especially Retina and Brain (Vision and Cognition)

Note: Linoleic and α-linolenic acids are precursors to ARA and DHA, respectively. All three fatty acids also are present in breast milk.
The Role of Nutrients in Supporting the Immune System

Energy
- Carbohydrate
- Fats
- Protein

Formulas
- Proteins, essential AA
- Minerals - Potassium
- Fats - PUFA, LCFA
- Carbohydrate
- Vitamins

Dietary Proteins
- Milk Caseins and Whey
- Soy Fractions
- Hydrolysates
 - Casein, Beef Heart

Dietary Proteins
- Milk Caseins
- Milk Whey
- Soy Fractions
- Hydrolysates
 - Casein, Beef Heart
SOY

Proprietary Soy Pulp Extraction

Heat Stable Proteins

- Beta-conglycin \(MW \approx 180,000 \)
- Glycinin \(MW \approx 320,000 \)

Cross reacts with cows milk proteins

React with human IgE

Bind divalent cations

Franck et al, Int Arch Allergy Immunol 128:212, 2002

Dietary Proteins

Milk Caseins

Milk Whey

Soy Fractions

Hydrolysates

Casein, Beef Heart

Hydrolysates

Casein, Beef Heart

Amigen - WWII

IV protein preparation for soldiers with abdominal wounds

Dietary Proteins

Hydrolysates

Casein, Beef Heart

Amigen - WWII

IV protein preparation for soldiers with abdominal wounds

Mead Johnson - Nutramigen

Dietary Proteins

Milk Caseins and Whey

Soy Fractions

Hydrolysates

Casein, Beef Heart
Milk Protein Homology

<table>
<thead>
<tr>
<th></th>
<th>Human</th>
<th>Bovine</th>
<th>Homology (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Whey (g/dl)</td>
<td>0.72</td>
<td>0.7</td>
<td>----</td>
</tr>
<tr>
<td>Alpha-lactalbumin (%)</td>
<td>30</td>
<td>19</td>
<td>72</td>
</tr>
<tr>
<td>Beta-lactoglobulin (%)</td>
<td>0</td>
<td>51</td>
<td>----</td>
</tr>
<tr>
<td>Serum Albumin (%)</td>
<td>6.4</td>
<td>6.4</td>
<td>80</td>
</tr>
<tr>
<td>Nonprotein nitrogen (%)</td>
<td>25</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Whey Proteins

Bind minerals
- Sodium
- Potassium
- Calcium
- Magnesium
- Zinc
- Iron

Whey Proteins - Bovine

All non-casein milk proteins

- Beta lactoglobulin: 45%
- Alpha lactalbumin: 12%
- Glycomacropeptide: 12%
- Proteose peptones: 12%
- Immunoglobulins: 8%
- Serum Albumin: 5%
- Lactoferrin: 1%
- Lactoperoxidase: 0.5%

Human Alpha Lactalbumin

Immunostimulator

- IL-1 Beta increased from
 - alveolar macrophages
- Lactoimmunopeptides
 - Tyr-Gly, Tyr-Gly-Gly
- proliferation of cultured human blood lymphocytes

Bovine Whey Proteins – Beta Lactoglobulin

Milk protein allergy

- Antigenic and Allergenic
- antigenicity reduced by conjugation with acidic oligosaccharides

Yoshida et al, J Agric Food Chem 53:6851, 2005

Alpha Lactalbumin

Inhibits human colon adenocarcinoma (culture)

HAMLET - human alpha-lactalbumin made lethal to tumor cells

- protein lipid complex – lactalbumin and oleic acid
- induces apoptosis of tumor cells
- fully differentiated cells unaffected

inhibits growth of human skin papillomas (topical)

Gustafsson et al, NEJM 350:2663, 2004
Alpha Lactalbumin

- Rich in tryptophan
- Evening lactalbumin intake
- Following morning
 - Improved morning alertness
 - More attentive to specific tasks

 Markus et al, Am J Clin Nutr 81:1026, 2005

Bovine Alpha Lactalbumin

- Immunostimulating peptide
 - Gly-Leu-Phe
- Binds to neutrophils and monocytes

 Juari et al, Biochim Biophys Acta 1160:251, 1992

- Stimulates neutrophil superoxide anions

 Migliore-Samour et al, Biochem Pharmacol 44:673, 1992

- In mice, protects against Klebsiella pneumoniae infection

Low Abundance Proteins

- 1% or less of the whey protein fraction
- Lactoferrin
- Lactoperoxidase
- Growth factors - TGF beta
- Cytokines
- Nucleosides

Lactoferrin

- Single chain iron-binding glycoprotein
- A natural defense protein –
 - Colostrum, milk, tears, saliva,
 - Bile, pancreatic juice,
 - Mucus, genital secretions
- Neutrophils – bacterial environment

Low Abundance Proteins

Lactoferrin

- Stimulates the immune system
- Anti-cancer activity
- Attenuates inflammatory disease
- Antimicrobial activity – macrophage
- Mediated CMV, Enterovirus, Hepatitis C, HIV-1

 Varadhachary et al, Int J Cancer 111:398, 2004
 Krissanen, J Am Col Nutr 26:71S, 2007
Dietary Proteins

Milk Caseins and Whey

Color of Milk

Casein molecule linear bipolar lipophilic and hydrophilic AA sequences in solution, casein associates into complex micelles which bind calcium and phosphate
Lactobezoar – Casein Calcium Phosphate cement

GI Proteins - Medications

Milks tested
woman, mare, goat, cow, ewe, dog, rabbit
Carbon 14 labeled drugs clonazepam, diazepam
Casein fraction of all milks accounted for >90% of drug binding
Stebler, Pharm Res 7:633, 1990

Milk Protein Homology

<table>
<thead>
<tr>
<th>Human</th>
<th>Bovine</th>
<th>Homology(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Protein (g/dl)</td>
<td>0.9</td>
<td>3.5</td>
</tr>
<tr>
<td>Total Casein (g/dl)</td>
<td>0.18</td>
<td>2.8</td>
</tr>
<tr>
<td>Alpha (%)</td>
<td>absent</td>
<td>50</td>
</tr>
<tr>
<td>Beta (%)</td>
<td>50</td>
<td>35</td>
</tr>
<tr>
<td>Kappa (%)</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Casein N/Whey N</td>
<td>20/80</td>
<td>80/20</td>
</tr>
</tbody>
</table>

Recommended Protein: Energy Ratios for Premature Infants

Grams protein per 100 kcal

<table>
<thead>
<tr>
<th>LSRO 2002*</th>
<th>Ziegler 2007†</th>
<th>ESPGHAN 2010‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5-3.6</td>
<td><1000 gm*</td>
<td>1000-1800 gm*</td>
</tr>
<tr>
<td>3.8</td>
<td>3.2-3.6</td>
<td>3.6-4.1</td>
</tr>
</tbody>
</table>

*According to infant's current weight
†LSRO: Life Science Research Office
§ESPGHAN: European Society of Pediatric Gastroenterology, Hepatology and Nutrition
Efficacy of Premature Formula with 3.6 g Protein per 100 kcal

- **Weight Gain, p<0.005**
 - Standard Protein Formula
 - High Protein Formula

- **Protein Accretion, p<0.001**
 - Standard Protein Formula
 - High Protein Formula

Cooke 2006 - Lab Values

- None of the infants developed uremia
- Blood urea was linearly related to nitrogen intake
- None of the infants developed metabolic acidosis
- No differences in total serum protein, albumin, or transferrin concentrations
- Total essential amino acids were ↑ in high protein group
- Non-essential amino acids:
 - 13 were ↑ in high protein group but ↓ cord reference value
 - 6 were ↑ than cord reference value; significance unclear

Pick a Product

Preterm newborn

- **CHO** – lactose/glucose polymers
- **Protein** – Cows milk proteins
 - ~50% greater than in term infant formula
- **Fats** – Essential FA, ½ MCT
- **Vitamins** – more Vit D, antioxidants
- **Minerals** – more K, Na, Ca, Mg, Trace

The Future

- Better Proteins
- Better metabolic monitoring
- Epigenetics
- Hormonal augmentation of growth – brain
- Prebiotics
- Probiotics

Probiotics

- **Nonpathogenic, live microorganisms in the food supply that, when consumed in adequate amounts, are capable of conferring a health benefit to the host**
 - Bifidobacteria
 - Lactobacilli

Gut Barrier and Immune Function

- Decreased gut permeability
- Increased mucin production
- Increased IgA secreting cells and secretory IgA
- Increased natural killer cell tumor-killing activity
- Increased production of macrophages and activated phagocytosis
- Immune modulation towards antigen tolerance

Douglas LL, Sanders ME. JADA. 2008;108(3):510-521

Probiotics

Probiotic Characteristics

- Be nonpathogenic in nature
- Be resistant to destruction by technical processing
- Be resistant to destruction by gastric acid and bile
- Adhere to or transiently colonize intestinal epithelial tissue
- Provide a measurable benefit to the host

Probiotics

- Anaerobic, non motile, Gram positive rods
- Tolerate low pH
- Can survive intestinal digestion and appear in stool
- Primary microbiota of breastfed infants
- Non-pathogenic

Bifidobacterium lactis

- Isolated from breastmilk
- Reduced infant colic and crying
- Improved GI motility
- Reduced intensity of abdominal pain
- Regulated bowel movements
- Improved feeding tolerance in premature infants
- Reduced diarrhea

Conclusion:

- The results confirm the significant benefits of probiotic supplements in reducing death and disease in preterm neonates.
- The dramatic effect sizes, tight confidence intervals, extremely low P values, and overall evidence indicate that additional placebo controlled trials are unnecessary if a suitable probiotic product is available.

Updated Meta-analysis of Probiotics for Preventing Necrotizing Enterocolitis in Preterm Neonates

Giri S, Despande S, Shingide R, Saigal P, and Malhotra A

Pediatrics 2010;125;921-930; originally published online Apr 19, 2010.