Cardiac Cath Lab:
Where We Were, Where We Are and Where We Are Going

Mark Goodwin, MD
Cardiology Update.2016
December 3, 2016

Advocate Heart Institute
1914 Gilles Holst
physicist
Control room of the Faulkner Hospital x-ray department
Brigham and Women's Faulkner Hospital Collection
History of Cardiac Cath

• 1711 Hales performs first cardiac cath of a horse using brass pipes, glass tube and trachea of a goose
• 1844 Bernard coins term cardiac catheterization for intracardiac pressures in animals
• 1929 Dr. Forsmann first human cardiac cath- on himself
• 1941 Cournand & Richards cardiac cath as diagnostic tool to measure cardiac output
• 1956 Forssmann, Cournand and Richards share the Nobel Prize…”the cardiac catheter was the key in the lock”
History of Cardiac Intervention

• 1958- Mason Sones first angiogram
• 1964 Charles Dotter transluminal angioplasty
• 1967 Dr. Rene Favaloro first saphenous vein bypass
• 1974 Andreas Gruentzig first PTA
• 1977 Gruentzig first human coronary angioplasty
• 1985 Dotter, Sones, Judkins and Gruentzig die
Evolution of Cath Lab

- 1980 Geoff Hartzler First Infarct Angioplasty
- 1986 Atherectomy
- 1987-1993 – laser, rotablator, IVUS, stents
- 1989 Pacemaker implants move to cath lab
- 1994 – Palmz-Schatz stent approved
- 2001 - 2 million angioplasties performed
- 2003 Cypher stent by Cordis approved
Multidisciplinary Team

- CTO
- LVAD
- TAVR
- MITRAL CLIP
- WATCHMAN
- CLI SCD
- PCI
- AAA
- PV
- EP
- ABLATION
- SCD
Today

- CTO – Most Chicagoland
- CTO Courses
- CTO Masters
- Impella
- CHIP-
- CHIP Training
- CLI Center
- Afib Ablation
- ICD/Device Implants
- Lead Extraction
- LVAD
- Parachute
- Laser

- Cardiomems
- Leadless Pacemaker #1 In US
- S3 – first commercial
- TAVR # 2 Chicago
- Valve in Valve
- Transapical/Transaortic TAVR
- Transcaval TAVR – First in Illinois
- ECMO
- Mitral Clip
- Watchman Most Implant 23 State
- PERT Centers
- RenalGuard
- CO2 Commander
Equipment

- Diagnostic catheters
- Guide catheters
- Sheaths
- Wires
- Coronary balloons
- Coronary stents
- Peripheral balloon
- Peripheral stents – self expanding, covered and balloon
- Carotid stents
- Filters
Equipment

• Support catheters
• Laser
• Rotablator
• Atherectomy – Silverhawk, Jetstream, Phoenix, CSI
• Aspiration catheters thrombus
• Angiojet
• Infusion catheters – Fountain, EKOS,
• Angiovac
• IVC Filters
• Snares
Equipment

- IVUS
- Optimal Coherence Tomography – OCT
- FFR
- Intracoronary drugs
- Drug Coated Balloons DCB
- Biovascular Scaffold BVS
- Radial/pedal approaches
- Topera
- Cryoablation
Procedures

• PCI stent/BVS
• IVUS
• Pacemaker
• ICD
• Sub Q ICD
• Ablation - afib/Vtach/aflutter/SVT
• Lead Extraction
• Cardio MEMS
• Event monitor
• Tilt table
• PERT
Procedures

- CTO
- CHIP
- Impella
- IABP
- Pulmonary embolism
- AAA Endograft
- Right heart cath for pulmonary HTN
- Myocardial biopsy
- Carotid stent
- CLI
- Pericardiocentesis
Procedures

- TAVR
- Mitral Clip
- Watchman
- Transcaval
- RP Impella
- LUCAS
- Shock Protocols
- Leadless Pacemaker
- Valve in valve
- Valvuloplasty
Average Course for Adults With Valvular Aortic Stenosis

50% of patients died within 1 year without valve replacement.
*Per the Inoperable Cohort of the PARTNER Trial

-5 year survival rate (distant metastases) of lung cancer, colorectal cancer, breast cancer, ovarian cancer and prostate cancer compared to severe inoperable aortic stenosis.
TAVR Approach
Watchman- Left Atrial Appendage Closure Device

- Alternative to long-term warfarin
- Non-valvular atrial fibrillation
- Minimally invasive catheter based
- March 2015 FDA Approval
- MHS largest implanter in 15 state region
Watchman Procedure

- Multidisciplinary team
- One-time implant that does not need to be replaced
- Performed in a cardiac cath lab/EP suite, does not need hybrid OR
- Performed by a Heart Team
 - EP/IC or EP&IC, TEE, General Anesthesia, Surgical Back-up, WATCHMAN Clinical Specialist
- Transfemoral Access: Catheter advanced to the LAA via the femoral vein (Does not require open heart surgery)
- General anesthesia (typical)
- 1 hour procedure (typical)
- 1-2 day hospital stay (typical)
The Hybrid Algorithm for CTO PCI

Dual Catheter Angiography

Yes

No

Antegrade

Retrograde

1. Ambiguous proximal cap
2. Poor Distal Target
3. Interventional Collateral
4. Length < 20mm

Yes

No

Wire escalation

Dissection Reentry (Crossboss-Stingray)

Wire escalation

Dissection Reentry (Reverse CART)
RCA Setup with Dual Angiography
Final Angiogram
A Largely Untreated Patient Population

Mitral Clip-Evalve-TMVR

- Reduction of significant symptomatic mitral regurgitation (MR ≥ 3+)
- Minimally invasive catheter based
- Avoid cardiopulmonary bypass
- Over 20,000 patients worldwide
- MHS 1st implant March 2015
 - 1 of 6 hospitals in Illinois
MitraClip® System
Lithoplasty®

Lesion modification using lithotripsy in a balloon

Tissue-selective:
• Hard on hard tissue, Soft on soft tissue
• Lithotripsy waves travel outside balloon
• Designed to disrupt both superficial, deep calcium

• Designed to normalize vessel wall compliance prior to controlled, low pressure dilatation
• Effective lesion expansion with minimized impact to healthy tissue
• Familiar Balloon-based endovascular technique
• “Front-line” balloon strategy (.014”compatible)
Impella RP® Heart Pump

Percutaneous Right-Side Support

- Supports flow from the Inferior Vena Cava (IVC) to the Pulmonary Artery (PA)
- 22F pump, 11 Fr catheter
- Up to 4 liters/min of flow
- Single vascular access (femoral vein)
- No sternotomy required
- No extracorporeal circulation
- 2nd Generation Canula and guidewire for improved placement (2017)

Indication for Use

Provides circulatory assistance for up to 14 days in pediatric or adult patients with a body surface area (BSA) ≥ 1.5 m² who develop acute right heart failure or decompensation following left ventricular assist device implantation, myocardial infarction, heart transplant, or open-heart surgery.
Expandable Cardiac Power

Impella ECP™

- Small 9F pump & catheter, expands to 18F in LV
- Est. flow >3 liters / minute
- Designed for duration up to 6 hours
- Wireless advancement into LV over pigtail
- Smooth atraumatic membrane sits across the aortic valve.

Impella ECP™ is in development and is not approved for use or sale.
Impella BTR™

• Full hemodynamic support with 5.5 L/min
• 19F pump & 9F catheter
• 45% shorter pump for improved deliverability
• Est. Flow 5.5 Liters / Minute
• Designed for duration of up to 1 year
• Axillary insertion/explant
• Patient discharge is possible with a wearable driver

Impella BTR™ is in development and is not approved for use or sale.
Innovation
Where to?
Tomorrow

- Tricuspid clips
- Mitral replacement
- Tricuspid replacement
- Biovascular scaffolds will lead market
- CT FFR
- Shock Wave PTA
- Increase in Robotics
- More Interventions and Less Diagnostics
- Door to Unload
- Percutaneous LVAD
- 50% of PCI will be home same day
Future

- CT FFR will grow to be the predominant diagnostic tool
- Cath lab will become like an I Phone. You will be able to open a wide variety of apps at the table side to diagnose more accurately and treat your patients more precisely
- Home monitoring, testing and evaluation of patients will continue to expand – Amazon Prime
- Call a friend - FaceTime
- CHIP will grow to be 30% of cath lab volume
- TAVR will be an outpatient procedure
- MVR, TVR will dwarf TAVR
- Cath lab 15 years from now will have no radiation
Thank You
Technology and Innovation
Abiomed Innovation Roadmap

Protected PCI – Ease-of-Use in Cath Lab, Lowering Access Complications

- Improved 14F Peel Away Sheaths (2017)
- Fast Set-up Interface (2016)
- Expandable Sheaths (2018)
- 9Fr Impella ECP (2019)

Cardiogenic Shock – Ease-of-Use in ICU, Enhanced Flow and Duration

- Guidewire Access (2017)
- Guidewire re-access (2017)
- Impella RP 2nd Gen (2017)
- Impella 5.5, Impella BTR (2019)
- Optical Pressure Sensor Technology (2018)
- Remote Monitoring (2018)

Some products shown are in development and not approved for use or sale.
Automated Impella® Fast Start Upgrade

Improved Ease of Use in Cath Lab

• < 2 min setup time
 – Automatically skips completed steps

• Improved illustration and animation to reduce common errors

• Clinical best practice reminders

• Algorithm changes including reduction of false alarms
14F Long & Short Introducers

For Use with Impella CP® Heart Pump
13cm and 25cm* lengths

- Improved femoral access for tortuous patients
- Peel-away design
- Improved hemostasis for short and long introducers with a newly designed valve

*25cm length is in development and is not approved for use or sale.
Updated Guidewire Access Repositioning Sheath

Impella CP®

- Facilitates escalation of care, closure, or pump replacement
- Simple guidewire placement with an 0.035” guidewire or smaller
- Improved femoral access in large patients with a 4cm longer wound closure sheath (same OD as previous sheath)
- Enhanced stability in Axillary patients with additional suture ribs for graft attachment
Integrated Optical Placement Sensors

Impella CP® Optical Pressure Sensor

- Simplifies device set-up
- Improved placement accuracy & ease of use
- Better sensor location distal to outflow
- Improved detection of valve plane
- Reduced complexity with no pressure lumen to purge or maintain

The Optical Sensor is in development and is not approved for use or sale.
Remote Link

AIC w/ Remote Link

- Wireless transmit of the display screen over a secure server.
- Fast remote viewing of patient status by clinicians, Abiomed field teams or the Abiomed Customer Support Center staff.
- Historical data capture provides a retrospective review of the critical performance parameters and alarms.

Wireless Remote Link is in development and is not approved for use or sale.
Enhanced Flow & Deliverability

Impella 5.5™

- Full hemodynamic support with 5.5 L/min
- 19F pump & 9F catheter
- 45% shorter pump for improved deliverability
- Designed for duration up to several months
- Percutaneous or axillary insertion/explant

The Impella 5.5™ is in development and is not approved for use or sale.