Update on the Biology and Treatment of Myeloproliferative Neoplasms

Olatoyosi Odenike
Associate Professor of Medicine
University of Chicago
Conflict of Interest Disclosure

<table>
<thead>
<tr>
<th>Company</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGI Pharma/Eisai</td>
<td>Research Support</td>
</tr>
<tr>
<td>Curagen/Topotarget</td>
<td></td>
</tr>
<tr>
<td>Incyte, Sanofi Aventis, Suneisis, Algeta, Spectrum Pharmaceuticals</td>
<td>Advisory Board/Consultancy</td>
</tr>
</tbody>
</table>
Objectives

• Describe the molecular genetic aberrations underlying the myeloproliferative neoplasms (MPNs)
• Discuss targeted therapeutic approaches for MPNs with a focus on JAK inhibitors in myelofibrosis (MF)
• Discuss ongoing challenges in treatment of MF and novel combination approaches
Myeloproliferative neoplasms

<table>
<thead>
<tr>
<th>Mast cell</th>
<th>Systemic mastocytosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red blood cells</td>
<td>Polycythaemia vera</td>
</tr>
<tr>
<td>Platelets</td>
<td>Essential thrombocythaemia</td>
</tr>
<tr>
<td>Eosinophils</td>
<td>Chronic eosinophilic leukemia</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>Chronic myeloid leukaemia</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>Chronic myelomonocytic leukemia</td>
</tr>
<tr>
<td>Monocytes</td>
<td>Primary myelofibrosis</td>
</tr>
</tbody>
</table>

Activating mutation

- KITD816V
- FIP1L1–PDGFRA
- JAK2V617F JAK2 Exon 12
- JAK2V617F MPLW515L/K
- FIP1L1–PDGFRA
- BCR–ABL
- TEL–PDGFRB
- BCR–PDGFR
- TEL–JAK2
- other fusion TKs
- JAK2V617F MPLW515L/K

Levine et al. Nature Reviews Cancer 2007
Myeloproliferative neoplasms and JAK2

<table>
<thead>
<tr>
<th>Other Myeloid Neoplasms</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refractory anemia with ring sideroblasts and thrombocytosis (RARS-T)</td>
<td>~50</td>
</tr>
<tr>
<td>Chronic myelomonocytic leukemia (CMML)</td>
<td>~5-10</td>
</tr>
<tr>
<td>Chronic eosinophilic leukemia, atypical CML, systemic mastocytosis</td>
<td><5</td>
</tr>
<tr>
<td>Acute myeloid leukemia</td>
<td><5</td>
</tr>
</tbody>
</table>
JAK2 Mutations in MPN

- **JAK2 V617F mutation**
 - Single nucleotide substitution in JAK2 exon 14 sequence
 - Mutation occurs in the pseudokinase domain of the protein

- **JAK2 exon 12 abnormalities**
 - Mutations, deletions, insertions

 - Result in constitutive activation of JAK2 TK
JAK-2 mediated Signal Transduction Pathways

Ligand Bound Receptor (EPOR, MPL, GCSFR)

P13K

AKT

mTOR

RAS

MAPK

STAT

Survival

Differentiation

Proliferation

Target Gene Activation
Diagnostic algorithm for MPN in JAK2 Era

JAK2V617F genotyping when a MPN is suspected

Positive

PV, ET, PMF

Likely

Use additional WHO criteria

Negative

PV: unlikely; test for *JAK2* ex 12

ET or PMF: possible; test for *MPL*

Use additional WHO criteria

Adapted from Vannucchi AM et al, CA Cancer J Clin 2009
What is the mutational basis of JAK2 V617F-negative ET and PMF?

Calreticulin (CALR) mutations

Late Breaking Abstracts Session, ASH Meeting, 2013

LBA-1: Dr. Robert Kralovics and colleagues
 — Presented by Dr. Klampfl Thorsten

LBA-2: Dr. Tony Green and colleagues
 — Presented by Dr. Jyoti Nangalia
CALR mutations in JAK2V617F negative ET and MF

JAK2 exon 12 mutant

Polycythemia Vera

97% JAK2V617F mutant

Essential Thrombocytosis Primary Myelofibrosis

30-40% CALR mutant

50-60% JAK2V617F mutant

Late Breaking Abstract #1 and #2: Tuesday, December 10, 2013: Kralovics & Green labs
Within ER
- chaperone ensuring quality control of glycoprotein folding
- calcium homeostasis

Outside ER
- found in cytoplasmic, cell surface and extracellular compartments
- roles in: proliferation
 - apoptosis
 - phagocytosis
 - immunogenic cell death

Calreticulin (CALR)
Diagnostic algorithm for MPN in JAK2/CALR Era

JAK2V617F genotyping when a MPN is suspected

- **Positive**
 - PV, ET, PMF
 - Likely
 - Use additional WHO criteria

- **Negative**
 - PV: unlikely; test for JAK2 ex 12
 - ET or PMF: possible; test for MPL and CALR
 - Use additional WHO criteria

Adapted from Vannucchi AM et al, CA Cancer J Clin 2009
Mutation Frequency in Chronic Phase and Post-MPN AML

<table>
<thead>
<tr>
<th>Gene</th>
<th>Chronic Phase</th>
<th>Blast Phase / AML</th>
</tr>
</thead>
<tbody>
<tr>
<td>TET2</td>
<td>PV: 7-16%, ET: 4-11%, PMF: 8-17%</td>
<td></td>
</tr>
<tr>
<td>ASXL1*</td>
<td>PV: 2-5%; ET: 5-8%; PMF: 7-17%</td>
<td>19%</td>
</tr>
<tr>
<td>DNMT3A</td>
<td>PV: 7%, ET: 3%, PMF: 7-15%</td>
<td>17%</td>
</tr>
<tr>
<td>CBL</td>
<td>PMF: 6%</td>
<td></td>
</tr>
<tr>
<td>LNK</td>
<td>PV, ET, PMF: <5%</td>
<td>~10%</td>
</tr>
<tr>
<td>IDH 1/2*</td>
<td>PMF: 4%</td>
<td>21%</td>
</tr>
<tr>
<td>IKZF1</td>
<td></td>
<td>19%</td>
</tr>
<tr>
<td>EZH2*</td>
<td>5-13% of MPNs</td>
<td></td>
</tr>
<tr>
<td>P53</td>
<td></td>
<td>27%</td>
</tr>
<tr>
<td>SRSF2*</td>
<td></td>
<td>19%</td>
</tr>
</tbody>
</table>

* Associated with worse leukemia-free or overall survival in PMF patients

Vannucchi et al, *Leukemia*, 2013
Therapeutic Implications of the Molecular Genetic Aberrations in MPNs?

Focus on Myelofibrosis
Survival in PMF

No. patients: 1,054
Median #months 69 (61 - 76)

Cervantes et al., Blood 2009
Causes of Mortality in MF

- **Transformation to acute leukemia**, 31%
- **PMF progression without transformation**, 18%
- **Thrombosis and cardiovascular complications**, 13%
- **Infection**, 11%
- **Bleeding**, 5%
- **Portal hypertension**, 4%
- **Other (including 12 cases second neoplasia)**, 17%
- **Transplant complications**, 1%
- **Other (including 12 cases second neoplasia)**, 17%

Median survival = 69 months (95% CI, 61-76 months)
- **517 of 1001 patients dead at time of analysis**
JAK Inhibitors in Clinical Use or in Trials in MF

<table>
<thead>
<tr>
<th>Agent</th>
<th>Trial Name</th>
<th>Current Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruxolitinib (Jakafi)</td>
<td>COMFORT-I COMFORT-II</td>
<td>Approved</td>
</tr>
<tr>
<td>Fedratinib (SAR302503, formerly TG101348)</td>
<td>JAKARTA</td>
<td>Phase III *</td>
</tr>
<tr>
<td>Pacritinib (SB1518)</td>
<td>PERSIST-I PERSIST-2</td>
<td>Phase III</td>
</tr>
<tr>
<td>Momelotinib (GS-0387; formerly CYT387)</td>
<td></td>
<td>Phase III Momelotinib vs. Ruxolitinib</td>
</tr>
<tr>
<td>INCB039110</td>
<td></td>
<td>Phase II</td>
</tr>
<tr>
<td>BMS-911543</td>
<td></td>
<td>Phase I/II</td>
</tr>
<tr>
<td>LY2784544</td>
<td></td>
<td>Phase I</td>
</tr>
</tbody>
</table>

* Abstract 393, ASH 2013; Clinical development halted due to Wernicke’s encephalopathy
COMFORT-I: Study Design
COntrolled MyeloFibrosis Study With ORal JAK Inhibitor Treatment

KEY INCLUSION CRITERIA
- PMF, PPV-MF, or PET-MF
- Intermediate-2 or high risk by IWG-MRT (IPSS)
- Palpable spleen ≥5 cm
- Platelet count ≥100 × 10^9/L
- JAK2 V617F positive or negative

(N=309)

RANDO M I Z E

1:1

Ruxolitinib
- 15 mg or 20 mg (n=155)

Placebo
- (n=154)

Patient population
- Study only enrolled patients with MF who were refractory to or were not candidates for available therapy

Starting doses of ruxolitinib:
- 15 mg in patients with platelet counts 100-200 × 10^9/L
- 20 mg in patients with platelet counts >200 × 10^9/L
COMFORT-I
Primary Endpoint: % of Patients With ≥35% Decrease in Spleen Volume at Week 24 (ITT)

- Patients who discontinued prior to week 24 or crossed over prior to week 24 were counted as non-responders
At week 24, ruxolitinib-treated patients had a median 33.0% decrease in spleen volume, and placebo-treated patients had a median 8.5% increase ($P < 0.0001$)
COMFORT-I: Percent of Patients With $\geq 50\%$ Decrease in Total Symptom Score at Week 24 (ITT)

- **Total Symptom Score** = the sum of scores for itching, night sweats, bone/muscle pain, abdominal discomfort, pain under the ribs on the left, and early satiety
- **Patients who discontinued prior to week 24 or crossed over prior to week 24 were counted as failures**

Ruxolitinib (n = 148) vs Placebo (n = 152)

- **Odds ratio (95% CI)**: $15.28 (6.93-33.66)$
- **$P < 0.0001$**

COMFORT-I three-year survival analysis

COMFORT-II three-year survival analysis: patients randomized to ruxolitinib showed longer overall survival than those randomized to BAT (hazard ratio, 0.48; 95% CI, 0.28-0.85; log-rank $P = 0.009$)

The survival benefit observed with ruxolitinib is likely a composite of multiple treatment effects (e.g., spleen volume reduction, improvement in constitutional symptoms, improvement in nutritional status).

Mesa et al. ASH 2012; abstract 1733
JAK Inhibitors in MF: Key Points

- Core benefits: reduction of splenomegaly, MF-related symptoms/QOL, and inflammatory cytokines
- Inhibitors exert anti-JAK1/JAK2 activity or more selective anti-JAK2 activity
- Active in JAK2 V617F-mutated AND JAK2 wild-type patients
- No substantive effect on marrow fibrosis or JAK2 V617F allele burden in most patients
- Data support relative survival benefit of ruxolitinib (vs. placebo or best available therapy [BAT]) with 2-3 years of median follow-up
- Managing on-target effects: anemia and thrombocytopenia
Mean Hemoglobin and Red Blood Cell Products Over Time

Mean Hemoglobin ± SEM (g/L)

Ruxolitinib

Placebo

Percent of Patients Receiving RBC Products in Prior 4 Weeks

Ruxolitinib: Anemia & Thrombocytopenia

- Total & high grade anemia (and thrombocytopenia) were more common with ruxolitinib compared to placebo or BAT
- Primarily manifests in the first 8-12 weeks
- Rarely leads to drug discontinuation
- Symptomatic improvement with ruxolitinib is similar in patients with high grade anemia versus no anemia
- Management of anemia requires a patient-specific approach:
 1) Dose-reduction or close watchful waiting over the first 8-12 weeks
 2) RBC transfusions as needed
 3) ESAs and other agents (e.g. danazol, lenalidomide) are being evaluated in combination with JAK inhibitors
- Starting dose and dose modifications for the platelet count should be guided by the prescribing information
Momelotinib: Transfusion Independence Response

Response by Dose (Core Study)

<table>
<thead>
<tr>
<th>Response by Dose (Core Study)</th>
<th>150 mg QD (n=52)</th>
<th>300 mg QD (n=60)</th>
<th>150 mg BID (n=42)</th>
<th>Total¹ (n=166)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfusion dependent at baseline (evaluable)</td>
<td>24</td>
<td>28</td>
<td>14</td>
<td>68</td>
</tr>
<tr>
<td>Transfusion independence rate (12 wks)</td>
<td>63%</td>
<td>75%</td>
<td>57%</td>
<td>68%</td>
</tr>
<tr>
<td>Minimum 2 g/dL increase in hemoglobin level (8 wks)</td>
<td>11%</td>
<td>8%</td>
<td>14%</td>
<td>13%</td>
</tr>
<tr>
<td>IWG-MRT anemia response rate</td>
<td>48%</td>
<td>55%</td>
<td>36%</td>
<td>48%</td>
</tr>
</tbody>
</table>

Of the transfusion dependent patients who did not achieve a full transfusion independence response, 23% achieved at least a 50% reduction in transfusion requirement in any 3-month period.

Onset and Durability of Response (Core and Extension Study)

<table>
<thead>
<tr>
<th>Onset and Durability of Response (Core and Extension Study)</th>
<th>Median</th>
<th>Min-Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to confirmed response (12 weeks) (Core; days)³</td>
<td>85</td>
<td>85-353</td>
</tr>
<tr>
<td>Duration of transfusion-free period (12 weeks) (Core and Extension; days)³</td>
<td>Not yet reached</td>
<td>85-988*</td>
</tr>
</tbody>
</table>

- 3 additional subjects achieved 12 week transfusion independence response during the Extension Study

³ Data based on responders

* Ongoing as of November 2012

Pardanani et al, ASH 2012

Update: Abstract 106
Pardanani et al, ASH 2013

Not statistically significant vs. 300mg QD
Efficacy of JAK inhibitors in MF Patients with Thrombocytopenia (50-100 x 10^9/L)

Talpaz et al, ASH 2012

Ruxolitinib

Pacritinib

Combined Best Response up to Week 24 data from two pacritinib Phase 2 clinical trials in patients with myelofibrosis

Komrojki et al, ASH, 2011; Mesa et. al. EHA 2011
JAK Inhibition: Other Applications

- **Hydroxyurea refractory / intolerant PV and ET**
 - ‘RESPONSE’ Trial

- **MDS/ MPN with JAK2 V617F mutation (e.g. CMML, RARS-T)**

- **JAK2-rearranged myeloid neoplasms**
 - Cytogenetic remissions with ruxolitinib in *PCM1-JAK2*-positive disease

- **Chuvash Polycythemia**
 - R200W-mutated *VHL* fails to bind SOCS1 and degrade JAK2

- **Chronic Neutrophilic Leukemia / Atypical CML**
 - *CSF3R* mutations signal through JAK2

2. Lierman et al, Blood, 2012
What are the unmet needs for MF in the JAK inhibitor era?

- Resistance/Disease Persistence to JAK inhibitors
- Lack of improvement in baseline cytopenias
- Lack of significant inhibition of the neoplastic clone
- Magnitude of the effects on natural history of disease unclear at this point
 - Leukemic transformation?
 - Survival benefit?
Other Novel Therapies in MF

• Epigenetic Modulators
• Immunomodulatory Agents
• Non-JAK kinase Inhibitors
• Antifibrosis agents
• Agents targeting the malignant megakaryocyte
• Telomerase Inhibitors
• Combination therapies
Mutations in Epigenetic Modifiers are an aspect of the Molecular Complexity of PMF

Chart adapted from analysis of all 10 markers in 483 patients with PMF: Vannucchi et al, Leukemia 2013
Hypermethylated Genes in Ph- MPN

<table>
<thead>
<tr>
<th>Author</th>
<th>Gene</th>
<th>Function</th>
<th>N</th>
<th>Methy %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capello D 2008</td>
<td>SOCS3</td>
<td>Signal Transduction</td>
<td>112</td>
<td>41</td>
</tr>
<tr>
<td>Jost 2007</td>
<td>SOCS1</td>
<td>Signal Transduction</td>
<td>39</td>
<td>15</td>
</tr>
<tr>
<td>Quentmeier 2007</td>
<td>SOCS2</td>
<td>Signal Transduction</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>Wang 2002</td>
<td>p15</td>
<td>Cell Cycle Regulation</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Jones 2004</td>
<td>RARβ</td>
<td>Retinoic acid receptor</td>
<td>18</td>
<td>89</td>
</tr>
<tr>
<td>Bogani 2008</td>
<td>CXCR4</td>
<td>Chemokine receptor</td>
<td>18</td>
<td>100</td>
</tr>
</tbody>
</table>
Drugs that act on the Epigenome

DNA Methyltransferase Inhibitors

- 5-aza-2'-deoxy-cytidine (decitabine)
- 5-aza-cytidine (azacitidine)

Histone Deacetylase Inhibitors

- Vorinostat (SAHA)
- Trichostatin A
- Romidepsin (Depsipeptide, FK-228)
Epigenetic modulators correct the abnormal stem cell trafficking in MF

- Combined DNMT inhibitor plus HDAC inhibitor in MF led to
 - Decrease in numbers of MF progenitor CD34+ cells
 - Upregulation in CXCR4
 - Correction of the abnormal stem cell trafficking in a NOD/SCID mouse model
 - Elimination of JAK2V617F + clonogenic cells

The HDAC Inhibitor ITF2357 inhibits the clonogenic activity of JAK2V617F cells

Clinical Relevance of DNMT Inhibition in MF?

<table>
<thead>
<tr>
<th>Agent</th>
<th>N</th>
<th>Response Rate</th>
<th>Comments</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azacitidine</td>
<td>34</td>
<td>24%</td>
<td>PR=1 CI=7</td>
<td>Quintas-Cardama</td>
</tr>
<tr>
<td>Azacitidine</td>
<td>10</td>
<td>0</td>
<td>Only 2 patients received >3 cycles</td>
<td>Mesa</td>
</tr>
<tr>
<td>Decitabine</td>
<td>21</td>
<td>37%</td>
<td>PR=2 CI=6</td>
<td>Odenike</td>
</tr>
<tr>
<td>Azacitidine</td>
<td>50</td>
<td>52%</td>
<td>Focused on MPN-blast phase</td>
<td>Thepot</td>
</tr>
</tbody>
</table>

Quintas-Cardama et al, Leukemia 2008; 22:965-70
Odenike O et al, ASH Annual Meeting abstracts, 2008, #2809
Thepot S et al, Blood 2010; 116:3735-42
HDAC inhibitor trials in MF

<table>
<thead>
<tr>
<th>Agent</th>
<th>Phase</th>
<th>N</th>
<th>Comments</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Givinostat</td>
<td>II</td>
<td>29</td>
<td>Included 16 pts with MF, 3 achieved major response in anemia</td>
<td>Rambaldi</td>
</tr>
<tr>
<td>Pracinostat</td>
<td>II</td>
<td>22</td>
<td>2 patients with anemia response</td>
<td>Quintas-Cardama</td>
</tr>
<tr>
<td>Panobinostat</td>
<td>Ia/II</td>
<td>176</td>
<td>Included 13 pts with MF, CI in 4 patients</td>
<td>DeAngelo</td>
</tr>
<tr>
<td>Panobinostat</td>
<td>II</td>
<td>35</td>
<td>Only 16 pts received >2 cycles, IWG response=1</td>
<td>DeAngelo</td>
</tr>
<tr>
<td>Panobinostat</td>
<td>I</td>
<td>18</td>
<td>3 of 5 patients treated >6 cycles responded</td>
<td>Mascarenhas</td>
</tr>
</tbody>
</table>

Rambaldi A et al, BJH, 2010; 150:446-455
DeAngelo DJ, Leukemia 2013
Mascarenhas J, BJH, 2008; 161:68-75
DeAngelo DJ, BJH 2013
Improved Efficacy of Combined Ruxolitinib and Panobinostat Treatment in murine model of JAK2V617F

Enhanced efficacy was observed with a combination of RUX and PAN

- There was no major change in tolerability, as assessed by body weight, between panobinostat alone or in combination with ruxolitinib

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mice Count</th>
<th>Statistic</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAN 4 mg/kg</td>
<td>27% *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAN 8 mg/kg</td>
<td>20% *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAN 12 mg/kg</td>
<td>11% *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUX 60 mg/kg</td>
<td>40% *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUX 60 mg/kg + PAN 4 mg/kg</td>
<td>22% *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUX 60 mg/kg + PAN 8 mg/kg</td>
<td>15% *†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUX 60 mg/kg + PAN 12 mg/kg</td>
<td>3% *† ‡</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P < 0.05 vs vehicle control † P < 0.05 vs rux ‡ P < 0.05 vs pan at same dose

Combination trials with Epigenetic Modulators

• Panobinostat and ruxolitinib
 - Phase I/II (PRIME) Study- NCT0169301 at Mt Sinai
 - Phase 1b study- NCT1433445 in Europe

• Azacitidine and ruxolitinib
 – Phase I/II Study- NCT01787487 at MDACC

• Future combinations
 – HDAC inhibitor + DNMT inhibitor
 – HDAC inhibitor +HSP90 inhibitor?
Non-JAK Kinase Inhibitors in MF

Combination trials of JAK Inhibitors and inhibitors of downstream signaling pathways
- Ruxolitinib plus the PI3K/mTOR inhibitor BKM120
- Clinicaltrials.gov-NCT01703248

Adapted from Odenike O, ASH Education Session 2013
Thalidomide and IMiD Analogs in Myelofibrosis

• Thalidomide
 – Antiangiogenic, anti-TNFα and T-cell co-stimulatory effects
 – Response rates in the 22% range for anemia, 8% for splenomegaly
 – Toxicities include sedation, neuropathy

• Lenalidomide (CC-5013)
 – Anemia response rates similar to Thalidomide
 – Active in del 5q

• Pomalidomide (CC-4047)

Mesa RA Blood 2010, 116:4436-38
Combination trials with Immunomodulatory Agents

• Ruxolitinib plus Pomalidomide
 – Phase I/II in Germany
 – Clinical trials.gov NCT01644110

• Ruxolitinib plus Lenalidomide
 – Clinical trials.gov NCT01375140
How I treat MF in the JAK Inhibitor era
DIPSS for Predicting Survival IN PMF

- Adverse prognostic Factors:
 - Age > 65
 - *Hb < 10 g/dl
 - WBC > 25K/μL
 - PB blasts ≥ 1%
 - Constitutional symptoms

<table>
<thead>
<tr>
<th>Score</th>
<th>Risk Group</th>
<th>Median Survival (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Low</td>
<td>Not reached</td>
</tr>
<tr>
<td>1-2</td>
<td>Intermediate-1</td>
<td>9.8</td>
</tr>
<tr>
<td>3-4</td>
<td>Intermediate-2</td>
<td>4.8</td>
</tr>
<tr>
<td>>4</td>
<td>High</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Low risk; Score = 0
Median survival: Not Reached

Int – 1 risk; Score = 1-2
Median Survival: 9.8 yrs.

Int – 2 risk: Score = 3-4
Median Survival: 4.8 yrs.

High Risk; Score = 5-6
Median Survival: 2.3 yrs.

- Asymptomatic: Observe
- Symptomatic or anemic:
 - JAK inhibitor if symptomatic
 - Clinical trial if cytopenic and / or prior JAK inhibitor exposure.
 - Consider ImiDs or androgens or ESAs for anemia

- Early referral for allogeneic SCT.
- JAK inhibitor if symptomatic
- Clinical trial if significant cytopenias and / or prior JAK inhibitor exposure

Adapted from Odenike O, ASH Education Session 2013