Intraoperative Image-guided Navigation Techniques:

Novel Applications

Dean G. Karahalios, M.D.
DISCLOSURES

Consultant: Medtronic/Medtronic Navigation
Consultant/Shareholder: Zimmer Biomet LANX
Research Sponsor: Medtronic Navigation

Some of the clinical applications described in this presentation may be “off-label.” These applications reflect the presenter’s experience only, and in no way represent any industry-sponsored promotion.
Mapping “image space” to “surgical space” to create an interactive relationship between the patient and the images
IMAGE-GUIDED SPINAL NAVIGATION

- Links CT MRI Fluoroscopy imaging data to surgical anatomy
- Manipulation of multi-planar images
- Precise orientation to unexposed spinal anatomy
What’s wrong with fluoro?

• Accuracy
• Only 2-D images
• Radiation
• Ergonomics
• Lead
Why navigation in lumbar cases?

• Start out with simpler straightforward cases.
• Facilitates cases where anatomy is hidden, distorted, or unfamiliar:
 – MIS
 – Trauma
 – Deformity
 – Revision
 – Novel techniques
• May increase speed, accuracy, and decrease radiation exposure.
Why Navigation?
Need for Improvement?

- Thoracic and Lumbar Spine - Open
 - Misplacement rates vary from 5-55%
Advantages of Image-guided Spinal Navigation

- Enhanced/expanded visualization
- Improve accuracy
- Minimize / eliminate need for intraoperative imaging
- Improved ergonomics
- Reduce radiation exposure
- Enable techniques not possible with standard intraoperative imaging
- Excellent teaching tool
Disadvantages of IGS

- Cost
- Learning curve
 - Additional OR time in early cases
- Segmental tool
 - 3D navigation
- Accuracy limits
 - IGS systems don’t replace surgical judgment
Background

- Historically, adoption of image-guided navigation technology in spinal surgery has been limited.
 - Inefficiencies of early systems.
 - Concerns regarding accuracy.
 - Cost.
Current State

• Presently, there has been an increase in adoption of these techniques.
 – “Real-time” imaging.
 – Automatic registration.
 – Higher fidelity imaging.

• Cone beam computed tomography (O-arm)
 – 3-D data.
 – High fidelity images.
 – Large field size.
Questions Remain

• Accuracy
• Efficiency
• Radiation exposure
 – Surgeon -> 0
 – Patient ?
IGS Accuracy

- Cadaveric study
- Fluoronav versus fluoro
- Protocol: rate, grade, and severity of breaches
- Radiation exposure
Mirza – Results/Conclusions

• Increased time to place screws with IGS.
• Single-reference Fluornav associated with high rate and severity of breach, and is "highly inaccurate and unsafe".
• Multiple-reference Fluoronav more accurate but increases radiation exposure.
• Using standard fluoroscopy, radiation exposure is “minimal” (surgeon 16 mrem/procedure, cadaver 121 mrem/specimen).
IGS Accuracy

- Clinical series, retrospective
- Fluoronav, ISO-C 3-D
- Mirza protocol: rate, grade, and severity of breaches
IGS Accuracy - Results

• Rate of unintentional perforation low, related to pedicle diameter.
• No difference between Fluoronav and ISO-C 3-D.
• Rate, grade, and severity of breaches low (much lower than described by Mirza).
• No severe or medial perforations.

Tabaraee E, Gibson AG, Karahalios DG, Potts EA, Mobasser JP, Burch S.

Abstract

Study Design: Cadaveric laboratory study
Objective: To compare the accuracy, efficiency, and safety of intraoperative cone beamed computed tomography with navigation (O-ARM) to traditional intraoperative fluoroscopy (C-ARM) for the placement of pedicle screws.

Summary of Background Data: Radiation exposure remains a concern with traditional methods of intraoperative imaging in spine surgery. The use of O-ARM has been proposed for more accurate and efficient spinal instrumentation. Understanding radiation imparted to patients and surgeons by O-ARM is important for assessing risks and benefits of this technology, especially in light of evolving indications.

Methods: Four surgeons placed 160 pedicle screws on eight cadavers without deformity. Eighty pedicle screws were placed using O-ARM and C-ARM each. Instrumentation was placed bilaterally in the thoracic (T1-6) spine and lumbosacral junction (L5-S1) using a standard open technique while MIS technique was used at the lumbar 3-4 (L3-4) level. A "post-operative" CT scan was performed on cadavers where instrumentation was done using the C-ARM. An independent musculoskeletal radiologist assessed final images for screw position. Time requiring set-up and instrumentation was recorded. Dosimeters were placed on multiple aspects of cadavers and surgeons to record radiation exposure.

Results: There were no differences in breach rate between O-ARM and C-ARM group (5 vs. 7, Chi2 = 0.63, p = 0.4). The set up time for the O-ARM group was longer than for the C-ARM group (592 seconds vs. 297, p <0.05). However, the average total time was statistically the same (1629 vs. 1639 seconds, p = 0.96). Radiation exposure was higher for surgeons in the C-ARM group and cadavers in the O-ARM group. When a "post-operative" CT scan was included in the estimation of the total radiation exposure, there was less of difference between the groups, but still more for the O-ARM group.

Conclusion: In cadavers without deformity, O-ARM use results in similar breach rates as C-ARM for the placement of pedicle screws. Time for instrumentation is shorter with the O-ARM, but requires a longer set-up time. The O-ARM exposes less radiation to the surgeon, but higher doses to the cadaver.
Accuracy Results

- All breaches lateral.
- No difference in accuracy between C-arm and O-arm.

<table>
<thead>
<tr>
<th></th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-arm</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>O-arm</td>
<td>2</td>
<td>3</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
Time Results

- Set up time faster with C-arm.
- Implant time faster with O-arm.
- No statistically significant difference in total time.
Conclusions

• O-arm at least as accurate fluoro.
• No increase in procedure time.
• Radiation exposure:
 – C-arm exposure to patient acceptable.
 – C-arm exposure to surgeon may exceed limits.
 – O-arm eliminates all radiation exposure to surgeon and staff.
 – O-arm doses to patient are higher than with C-arm, but less of a difference if confirmatory CT is performed.
Applications
Cervical Applications

- Condyle screw fixation
- C1 lateral mass screws
- Odontoid screw fixation
- C2 pars and pedicle screws
- C1-2 transarticular screws
- Subaxial lateral mass screws
- Subaxial pedicle screws
Cervical Lateral Mass
Computer-assisted posterior instrumentation of the cervical and cervico-thoracic spine
Cervical Pedicle Screws
C1-2 Transarticular Screws
C2 Pedicle Screws
C1 Lateral Mass Screws
Occipital Condyle Screws

Cadaveric study for placement of occipital condyle screws: technique and effects on surrounding anatomic structures

Laboratory investigation

Frank La Marca, M.D.,1 Geoffrey Zubay, M.D.,2 Thomas Morrison, III, M.D.,2 and Dean Karahalios, M.D.3

1Department of Neurosurgery, University of Michigan Health System, Ann Arbor, Michigan; 2Department of Neurosurgery, Northwestern University, Chicago; and 3Chicago Institute of Neurosurgery and Neuroresearch, Neurologic and Orthopedic Hospital of Chicago, Rush University Medical Center, Chicago, Illinois
3D Anatomy in Motion
Occipital Condyle Fixation
Occipital Condyle Fixation
Cervical Subaxial Transarticular Screws

- Fixates 2 vertebral segments
- Engages multiple cortices
Odontoid Fracture
Odontoid Screw Fixation - MIS
Odontoid Screw Fixation
Odontoid Screw Fixation
Odontoid Screw Fixation
Thoracic Lumbar & Sacropelvic Applications

- Pedicle screws (deformity)
- Direct lateral approach (DLIF)
- Transarticular/transverse vertebral pedicle screws
- Facet screws
- Translaminar facet screws
- Alar screws
- Iliac bolts
- S2 alar screws
- Sacroiliac fusion
Deformity
Navigated DLIF
Navigated DLIF
Navigated DLIF
Navigated DLIF
Transvertebral Pedicle Screws

- Fixate 2 vertebral segments
- Purchase multiple cortical layers
Anterior transvertebral interbody cage with posterior transdiscal pedicle screw instrumentation for high-grade spondylolisthesis

Technical note

WILL FOREST BERINGER, D.O., JEAN-PIERRE MOBASSER, M.D., DEAN KARAHALIOS, M.D., AND ERIC ALFRED POTTS, M.D.
L5-S1 Transvertebral Fixation
Sacral Alar Screws

- Substitute or adjunct to S1 PS
- May place L5 root at risk
- Location at anterior inferior border of sacrum
Iliac Bolts

B.J. Garrido and K.E. Wood / The Spine Journal 11 (2011) 331–335

Advocate Health Care
Reference Arc – Perc Pin
S2-iliac Screws

- Alternative to iliac bolts
- Multiple cortices engaged
- Screw head aligns more readily with the S1 pedicle screws
Sacroiliac Joint Fusion
Sacrectomy Reconstruction
Non-instrumented Applications

• Cervical corpectomy
• Cervical foraminotomy
• Trauma (decompression)
• Tumor (biopsy and resection)
Trauma and Tumor

adequacy of decompression
Anterior Cervical Decompression

- Reference arc attached to Mayfield
- Keeps decompression centered
Posterior Cervical Decompression

- Reference arc attached to Mayfield
- Limits incision
- Better delineation of lower cervical region
Conclusions

- Image-guided spinal navigation
 - Fast, accurate, safe
 - Not just for pedicle screws any more
 - Enabling technology
 - MIS techniques
 - Novel procedures
 - Excellent educational tool
Thank You